Introduction to 3–manifolds

Matthias Nagel

Exercise 3.1. Let K be a knot in S^3 . Compute all homology groups $H_i(X_K; \mathbb{Z})$ of the exterior X_K of K. Show that $H_1(X_K; \mathbb{Z})$ is generated by a meridian of the knot K. Hint: Apply the Mayer-Vietoris sequence to the decomposition $S^3 = X_K \cup (S^1 \times D^2)$.

Exercise 3.2. Let a and b be integers.

- 1. Suppose that a and b are coprime. Show that there exists a diffeomorphism $f: T^2 \to T^2$, that sends the class $(a, b) \in \pi_1(T^2) = \mathbb{Z}^2$ to (1, 0). Hint: Construct a linear map $\mathbb{R}^2 \to \mathbb{R}^2$ that descends to f.
- 2. Let $e: S^1 \to S^1 \times S^1$ be the map $z \mapsto (z^a, z^b)$. Prove that e is an embedding if and only if gcd(a, b) = 1.

Exercise 3.3. For $p \ge 2$ and q coprime to p, consider the lens space L(p,q), which is the quotient of $S^3 = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1|^2 + |z_2|^2 = 2\}$ by the group action of \mathbb{Z}_p given by $1 \cdot (z_1, z_2) = (e^{2\pi i/p} \cdot z_1, e^{2\pi i \cdot q/p} \cdot z_2)$. Denote the quotient map $S^3 \to L(p,q)$ by π , and define

$$T := \{ (z_1, z_2) \in S^3 \colon |z_1|^2 = 1 \} \cong S^1 \times S^1.$$

Show that $\pi(T) \subset L(p,q)$ is also a 2-torus, and determine $L(p,q)|\pi(T)$, the result of cutting L(p,q) along $\pi(T)$.

Exercise 3.4. Two homeomorphisms $g_0, g_1: X \to X$ are *isotopic*, if there exists a continuus map $F: X \times I \to X$ such that $f_t(x) := F(x,t)$ has the following properties: f_t is a homeomorphism for every $t \in I$, $f_0 = g_0$ and $f_1 = g_1$.

1. Prove that a homeomorphism $f: S^{n-1} \to S^{n-1}$ extends to a homeomorphism $F: D^n \to D^n$ for $n \ge 1$.

Hint: The disk is homeomorphic to the cone $S^{n-1} \times [0,1]/(S^{n-1} \times \{1\})$.

2. (Alexander trick) If a homemorphisms $f: D^n \to D^n$ restricts to the identity $\operatorname{id}_{S^{n-1}}$ on S^{n-1} , then f is isotopic to id_{D^n} . (Likely, you will also arrange that the isotopy f_t fulfills $f_t|_{S^{n-1}} = \operatorname{id}_{S^{n-1}}$ for every $t \in I$.)

Hint: Let f happen in a smaller and smaller disk and extend by the identity.