Introduction to 3–manifolds

Matthias Nagel

Exercise 4.1. Show that any embedded 2-torus $T^2 \subset S^3$ separates, and it bounds a solid torus $S^1 \times D^2$ on one of its sides.

Hint: Likely, you need the following fact about amalgamations from group theory: suppose G is the coproduct of A and B along H, that is, G fits in a push-out diagram below

Then, if both i_A and i_B are injective, then so are j_A and j_B .

Exercise 4.2. Let P be the sphere bundle over S^1 with non-orientable total space, which is the mapping torus $M_{\varphi}(S^2)$ for an orientation-reversing diffeomorphism $\varphi \in \text{Diff}(S^2)$. Show that $P \# P \cong (S^1 \times S^2) \# P$.

Hint: Find an orientation-preserving loop intersecting a fibre of P in a single point. Now remove neighbourhoods. To determine the complement, fill the neighbourhood of the arc (and two 3–balls) back in.

Exercise 4.3 (Poincaré homology sphere). Consider the quaternions $\mathbb{H} = \mathbb{R}\langle 1, i, j, k \rangle$, the 4-dimensional associative \mathbb{R} -algebra with $i^2 = j^2 = k^2 = ijk = -1$. We can write any element $z = a \cdot 1 + b \cdot i + c \cdot j + d \cdot k$ for $a, b, c, d \in \mathbb{R}$. Define an involution $z \mapsto \overline{z}$ on \mathbb{H} by

$$a \cdot 1 + b \cdot i + c \cdot j + d \cdot k \mapsto a \cdot 1 - b \cdot i - c \cdot j - d \cdot k,$$

that is $\overline{\overline{z}} = z$ and $\overline{z_0 \cdot z_1} = \overline{z_1} \cdot \overline{z_0}$. Since $z \cdot \overline{z} = a^2 + b^2 + c^2 + d^2$, we obtain a norm on \mathbb{H} defined by $||z|| = \sqrt{z \cdot \overline{z}}$. The quaternions decompose $\mathbb{H} = \mathbb{R}\langle 1 \rangle \oplus \mathbb{R}\langle i, j, k \rangle$ into the eigenspaces of the involution, the *real* and *imaginary quaternions*. The imaginary quaternions $\operatorname{Im} \mathbb{H} := \{z \in \mathbb{H} : a = 0\} = \mathbb{R}\langle i, j, k \rangle$ form a 3-dimensional \mathbb{R} -vector space.

Now establish the following, where points 1. and 2. have only been added for the sake of completeness. Only prove them, if they align with your interests.

- 1. Show that conjugation $(q, z) \mapsto qz\overline{q}$ leaves $\operatorname{Im} \mathbb{H}$ invariant, so it restricts to a map $\mathbb{H} \times \operatorname{Im} \mathbb{H} \to \operatorname{Im} \mathbb{H}$, and defines a homomorphism $\mathbb{H} \to \operatorname{Hom}_{\mathbb{R}}(\operatorname{Im} \mathbb{H}, \operatorname{Im} \mathbb{H})$.
- 2. Show that this map restricts to a homomorphism $\rho: S(\mathbb{H}) \to O(\operatorname{Im} \mathbb{H})$, where $S(\mathbb{H})$ denotes the subgroup $\{z \in \mathbb{H}: ||z|| = 1\}$ and $O(\operatorname{Im} \mathbb{H}) = \{f \in \operatorname{GL}(\operatorname{Im} \mathbb{H}): ||f(v)|| = ||v|| \text{ for } v \in \operatorname{Im} \mathbb{H}\}.$

Show that ρ is a local diffeomorphism, and that it has kernel ker $\rho = \{\pm 1\}$. Deduce that it image is an open subgroup, and so it is the identity component SO(Im \mathbb{H}) of O(Im \mathbb{H}). Deduce that ρ is a 2-fold cover.

Note: $S(\mathbb{H}) \cong S^3$ and thus, we have constructed the universal cover $Spin(3) := S(\mathbb{H})$ of SO(3).

3. Consider the icosahedral group $A \subset SO(3)$ of orientation-preserving symmetries of the regular icosahedron, which is the alternating group $A \cong A_5$. This group is perfect, i.e. it is equal to its commutator subgroup A = [A, A]. Consider its preimage $I_2 = \rho^{-1}(A)$, the binary icosahedral group.

Show that I_2 contains a non-trivial perfect subgroup Γ .¹ Note that $S(\mathbb{H})$ acts on itself, and so $S(\mathbb{H}) \subset O(\mathbb{H}) = O(4)$.

Show that the action of Γ on $S(\mathbb{H})$ is a covering action, and thus $M := S(\mathbb{H})/\Gamma$ is closed elliptic 3-manifold. The manifold $S(\mathbb{H})/I_2$ is called the *Poincaré homology* sphere.

4. Show that $H_k(M;\mathbb{Z}) \cong H_k(S^3;\mathbb{Z})$ for all $k \ge 0$, but M is not diffeomorphic to S^3 .

¹The group I_2 is actually perfect itself and so we can pick $\Gamma = I_2$, but I am unable to prove this without a concrete description of $A \subset SO(3)$. Any ideas?