Introduction to 3-manifolds

Matthias Nagel

Exercise 4.1. Show that any embedded 2 -torus $T^{2} \subset S^{3}$ separates, and it bounds a solid torus $S^{1} \times D^{2}$ on one of its sides.

Hint: Likely, you need the following fact about amalgamations from group theory: suppose G is the coproduct of A and B along H, that is, G fits in a push-out diagram below

Then, if both i_{A} and i_{B} are injective, then so are j_{A} and j_{B}.
Exercise 4.2. Let P be the sphere bundle over S^{1} with non-orientable total space, which is the mapping torus $M_{\varphi}\left(S^{2}\right)$ for an orientation-reversing diffeomorphism $\varphi \in \operatorname{Diff}\left(S^{2}\right)$. Show that $P \# P \cong\left(S^{1} \times S^{2}\right) \# P$.
Hint: Find an orientation-preserving loop intersecting a fibre of P in a single point. Now remove neighbourhoods. To determine the complement, fill the neighbourhood of the arc (and two 3 -balls) back in.

Exercise 4.3 (Poincaré homology sphere). Consider the quaternions $\mathbb{H}=\mathbb{R}\langle 1, i, j, k\rangle$, the 4-dimensional associative \mathbb{R}-algebra with $i^{2}=j^{2}=k^{2}=i j k=-1$. We can write any element $z=a \cdot 1+b \cdot i+c \cdot j+d \cdot k$ for $a, b, c, d \in \mathbb{R}$. Define an involution $z \mapsto \bar{z}$ on \mathbb{H} by

$$
a \cdot 1+b \cdot i+c \cdot j+d \cdot k \mapsto a \cdot 1-b \cdot i-c \cdot j-d \cdot k
$$

that is $\overline{\bar{z}}=z$ and $\overline{z_{0} \cdot z_{1}}=\overline{z_{1}} \cdot \overline{z_{0}}$. Since $z \cdot \bar{z}=a^{2}+b^{2}+c^{2}+d^{2}$, we obtain a norm on \mathbb{H} defined by $\|z\|=\sqrt{z \cdot \bar{z}}$. The quaternions decompose $\mathbb{H}=\mathbb{R}\langle 1\rangle \oplus \mathbb{R}\langle i, j, k\rangle$ into the eigenspaces of the involution, the real and imaginary quaternions. The imaginary quaternions $\operatorname{Im} \mathbb{H}:=\{z \in \mathbb{H}: a=0\}=\mathbb{R}\langle i, j, k\rangle$ form a 3 -dimensional \mathbb{R}-vector space.

Now establish the following, where points 1 . and 2 . have only been added for the sake of completeness. Only prove them, if they align with your interests.

1. Show that conjugation $(q, z) \mapsto q z \bar{q}$ leaves $\operatorname{Im} \mathbb{H}$ invariant, so it restricts to a $\operatorname{map} \mathbb{H} \times \operatorname{Im} \mathbb{H} \rightarrow \operatorname{Im} \mathbb{H}$, and defines a homomorphism $\mathbb{H} \rightarrow \operatorname{Hom}_{\mathbb{R}}(\operatorname{Im} \mathbb{H}, \operatorname{Im} \mathbb{H})$.
2. Show that this map restricts to a homomorphism $\rho: S(\mathbb{H}) \rightarrow \mathrm{O}(\operatorname{Im} \mathbb{H})$, where $S(\mathbb{H})$ denotes the subgroup $\{z \in \mathbb{H}:\|z\|=1\}$ and $\mathrm{O}(\operatorname{Im} \mathbb{H})=\{f \in \mathrm{GL}(\operatorname{Im} \mathbb{H}):\|f(v)\|=$ $\|v\|$ for $v \in \operatorname{Im} \mathbb{H}\}$.
Show that ρ is a local diffeomorphism, and that it has kernel ker $\rho=\{ \pm 1\}$. Deduce that it image is an open subgroup, and so it is the identity component $\mathrm{SO}(\operatorname{Im} \mathbb{H})$ of $\mathrm{O}(\operatorname{Im} \mathbb{H})$. Deduce that ρ is a 2 -fold cover.

Note: $S(\mathbb{H}) \cong S^{3}$ and thus, we have constructed the universal cover $\operatorname{Spin}(3):=$ $S(\mathbb{H})$ of $\mathrm{SO}(3)$.
3. Consider the icosahedral group $A \subset \mathrm{SO}(3)$ of orientation-preserving symmetries of the regular icosahedron, which is the alternating group $A \cong A_{5}$. This group is perfect, i.e. it is equal to its commutator subgroup $A=[A, A]$. Consider its preimage $I_{2}=\rho^{-1}(A)$, the binary icosahedral group.
Show that I_{2} contains a non-trivial perfect subgroup $\Gamma .{ }^{1}$ Note that $S(\mathbb{H})$ acts on itself, and so $S(\mathbb{H}) \subset O(\mathbb{H})=O(4)$.
Show that the action of Γ on $S(\mathbb{H})$ is a covering action, and thus $M:=S(\mathbb{H}) / \Gamma$ is closed elliptic 3 -manifold. The manifold $S(\mathbb{H}) / I_{2}$ is called the Poincaré homology sphere.
4. Show that $H_{k}(M ; \mathbb{Z}) \cong H_{k}\left(S^{3} ; \mathbb{Z}\right)$ for all $k \geq 0$, but M is not diffeomorphic to S^{3}.

[^0]
[^0]: ${ }^{1}$ The group I_{2} is actually perfect itself and so we can pick $\Gamma=I_{2}$, but I am unable to prove this without a concrete description of $A \subset \mathrm{SO}(3)$. Any ideas?

