Math 381 Complex Variables and Transforms

Instructor: Matthias Nagel

due in class 13:35, Feb 1

Homework 2

Recall that the derivates of the functions sinh: $\mathbb{R} \rightarrow \mathbb{R}$ and $\cosh : \mathbb{R} \rightarrow \mathbb{R}$ are related by $\sinh ^{\prime}(x)=\cosh (x)$ and $\cosh ^{\prime}(x)=\sinh (x)$.
Exercise 2.1. Simplify the following expression for $\theta=\frac{2 \pi}{7}$:

$$
1+\cos (\theta)+\cos (2 \theta)+\ldots+\cos (7 \theta)
$$

Hint: Recall Exercise 1.5.
Exercise 2.2. Calculate the (complex) derviatives of the following functions

1. $f(z):=\frac{z-1}{2 z+1}$ for $z \neq \frac{-1}{2}$
2. $f(z):=z^{2}\left(1+z^{-2}\right)^{4}$ for $z \neq 0$.

Exercise 2.3. Verify that the function $f(x+i y)=\sqrt{|x y|}$ has no complex derivative in 0 . Also check that the functions $u(x, y)$ and $v(x, y)$ with $f(x+i y)=u(x, y)+i v(x, y)$ do fulfil the Cauchy-Riemann equations in the point 0 .
Exercise 2.4. Do the following functions u, v fulfill the Cauchy-Riemann equations?

1. $u(x, y)=e^{-x} \cos y$ and $v(x, y):=-e^{-x} \sin y$
2. $u(x, y)=\cos x \cosh y$ and $v(x, y)=-\sin x \sinh y$.

Exercise 2.5. Find a harmonic conjugate to the functions

1. $u(x, y):=x^{3}-3 x y^{2}$
2. $u(x, y):=\sinh x \cdot \sin y$
3. $u(x, y):=\frac{y}{x^{2}+y^{2}}$

Exercise 2.6. Calculate the line integrals $\int_{\gamma} f(z) d z$ for:

1. $f(z):=\frac{1}{z^{2}}$ along the curve $\gamma:[0,1] \rightarrow \mathbb{C} \backslash\{0\}$ with $\gamma(t):=\exp (2 \pi i t)$.
2. $f(z):=\bar{z}$ along the curve $\gamma:[0,1] \rightarrow \mathbb{C}$ with $\gamma(t):=t(1+i)$.
3. $f(z):=\bar{z}$ along the curve $\gamma:[0,1] \rightarrow \mathbb{C}$ with $\gamma(t):=t+i t^{2}$.

Exercise 2.7. Let $f: \mathbb{C} \backslash\{i, 1+i, 1\} \rightarrow \mathbb{C}$ be the function defined by

$$
f(z):=\frac{1}{z-i}-\frac{i}{z-(1+i)}+\frac{3}{(z-1)^{2}}
$$

Calculate the following line integrals $\int_{\gamma_{i}} f(z) d z$ for $i=1,2,3$, where the curves γ_{i} are drawn in Figure 1 below.

Figure 1: Curves γ_{i} for Exercise 2.7

