Math 381 Complex Variables and Transforms

Instructor: Matthias Nagel
due in class 13:35, Feb 15

Homework 3

Exercise 3.1. For two complex numbers $a, b \in \mathbb{C}$, prove the inequality

$$
|a+b| \leq|a|+|b|
$$

Exercise 3.2. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function with $|f(z)| \leq \frac{C}{|z|+1}$ for a constant $C>0$. Prove that $f(z)=0$ for all $z \in \mathbb{C}$.
Hint: Apply the Cauchy Integral formula for larger and larger circles and estimate.
Exercise 3.3. Let $U \subset \mathbb{C}$ be a simply-connected subset and $f: U \rightarrow \mathbb{C}$ a holomorphic function which is nowhere zero. Construct a holomorphic function $G: U \rightarrow \mathbb{C}$ such that $f(z)=\exp (G(z))$, i.e. define $\log f$.
Hint: You can't simply take the composition $\log f$ as the image of the function f might not be contained in a simply-connected subset of \mathbb{C}, but you probably know the derivative of G. Now reinvent the wheel.

Exercise 3.4. For the path $\gamma:[0,1] \rightarrow \mathbb{C}$ with $\gamma(t):=\exp \left(t^{2}-t\right)+2 \pi i t$ calculate

$$
\int_{\gamma} z \sinh (z) d z
$$

Exercise 3.5. Let $\widetilde{\log }$ be the logarithm on $\mathbb{C} \backslash \mathbb{R}_{\geq 0}$ centered at -1 and based at $i \pi$. We denote the principal branch of the logarithm by log. Compute $f: \mathbb{C} \backslash \mathbb{R} \rightarrow \mathbb{C}$ where

$$
f(z):=\widetilde{\log z}-\log z
$$

Exercise 3.6. Prove that $\mathbb{C} \backslash \mathbb{R}_{\leq 0}$ is star-shaped with center 1 .

