Math 381 Complex Variables and Transforms

Instructor: Matthias Nagel
due in class 13:35, Mar 7

Homework 4

The function arctan: $\mathbb{C} \backslash\{ \pm i t: t>1\} \rightarrow \mathbb{C}$ is defined by

$$
\arctan (z):=\int_{0}^{z} \frac{1}{1+u^{2}} d u
$$

Recall that $\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{k}=e$ and $\binom{\sigma}{0}:=1$ and for all other natural numbers n :

$$
\binom{\sigma}{n}:=\frac{\sigma(\sigma-1) \cdots(\sigma-n+1)}{n!}
$$

Exercise 4.1. Invert the function $\cos z$ near the point $\frac{\pi}{3}$ and express it in terms of branches of the logarithm and the square root function.

Exercise 4.2. Calculate the radius of convergence of the following series:

1. $\sum_{k} k^{2} z^{k}$
2. $\sum_{k} \frac{k^{k}}{k!} z^{k}$
3. $\sum_{k} \exp (k) z^{2 k}$
4. $\sum_{k}\binom{\sigma}{k} z^{k}$ for a complex number σ.

Exercise 4.3. Expand the following function $f(z)$ into a power series $\sum_{k} a_{k}\left(z-z_{0}\right)^{k}$ around the the given point z_{0} :

1. $f(z):=\frac{z^{3}}{z^{2}+1}$ with $z_{0}=-1$.
2. $f(z):=\arctan (z)$ with $z_{0}=0$.
3. $f(z):=\cos z \cdot \sin z$ with $z_{0}=0$.
4. $f(z):=\frac{\cosh z}{1-z}$ with $z_{0}=0$.

Exercise 4.4. Determine B_{0}, \ldots, B_{3} of the expansion

$$
\frac{z}{e^{z}-1}=\sum_{k} B_{k} z^{k} .
$$

