Math 381 Complex Variables and Transforms

Instructor: Matthias Nagel

due in class 13:35, Mar 29

Homework 5

Exercise 5.1.

1. Compute the inverse Z-transform of the function

$$
F(z):=\frac{2}{z-3} .
$$

2. Show for a complex number $a \in \mathbb{C}$ that

$$
Z[\exp (a t)]=\frac{z}{z-\exp (a T)}
$$

Exercise 5.2. Expand the function $f(z):=\frac{1}{(z-1)^{3}}$ into a power series around $z_{0}=0$.
Exercise 5.3. Calculate the winding numbers of the path γ around the points a_{i} drawn in Figure 1.

Exercise 5.4.

1. Evaluate the following line integral

$$
\int_{\partial B_{2}(0)} z \sin \left(\frac{1}{z-1}\right) d z .
$$

2. Determine the nature of the isolated singularities at z_{0} of the functions below. If the function has a pole at z_{0} also determine its order.
a) $\sinh (1 / z)$ at $z_{0}=0$.
b) $\frac{e^{z}-e}{\log z}$ at $z_{0}=1$, where \log denotes the principal branch of the logarithm.
c) $\frac{\sinh z}{z \sin z}$ at $z_{0}=0$.

Exercise 5.5.

1. Evaluate the line integral

$$
\int_{\partial B_{5}(9)} \frac{1}{\sin \sqrt{z}} d z,
$$

where \sqrt{z} denotes the principal branch of the complex square root.
2. Evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{\cos 2 x}{x^{2}+9} d z
$$

Hint: Use Jordan's Lemma.

Figure 1: Curve γ and points a_{i} for Exercise 5.3

