Instructor: Matthias Nagel

due in class 9:30, September 22

Homework 1

Exercise 1.1 (Continuity). Let (X, d), (Y, d) be two metric spaces. Let $f: X \to Y$ be a function. Show the following are equivalent:

- (1) f is continuous in the ε - δ -sense.
- (2) for all $x \in X$ and an open set $V \ni f(x)$, there exists an open set $U \ni x$ such that $f(U) \subset V$.
- (3) for all open sets $V \subset Y$, the preimage $f^{-1}(V)$ is open.
- **Exercise 1.2** (Subspace topology). (1) Let (X, \mathcal{O}) , (Y, \mathcal{S}) be two topological space, and a continuous function $f: X \to Y$. Let $A \subset X$ and $B \subset Y$ two subsets such that $f(A) \subset B$. Show the restriction $f|_A: A \to B$ is continuous with respect to the subspace topologies on A and B.
 - (2) Let (X, \mathcal{O}) be a topological space and A a subset of X. Let τ be a topology with the following property: for every topological spaces Y and every continuous map $f: X \to Y$, also the restriction $f|_A: A \to Y$ is continuous. Show that the subspace topology \mathcal{O}_A is coarser than τ ; i.e. $\mathcal{O}_A \subset \tau$.

Exercise 1.3. (1) Show that S^n is path-connected for $n \ge 1$. Hint: you can use the stereographic projection.

(2) Show that the upper hemisphere $D_{+}^{n} = \{(x_1, \ldots, x_{n+1}) \in S^n \colon x_{n+1} \ge 0\}$ is homeomorphic to the *n*-disk D^n for $n \ge 0$.

Exercise 1.4. Recall that we have considered the set of path components

 $\pi_0(X) = \{ \text{path components of } X \}$

for a topological space X, and constructed a map $\pi_0(f): \pi_0(X) \to \pi_0(Y)$ for every continuous function $f: X \to Y$. Show that $\pi_0: \text{Top} \to \text{Set}$ is a *functor*; i.e. the following two properties hold:

- (1) $\pi_0(f \circ g) = \pi_0(f) \circ \pi_0(g)$ for every $f: X \to Y$ and $g: Y \to Z$, and every space X, Y, Z.
- (2) $\pi_0(\operatorname{id}_X) = \operatorname{id}_{\pi_0(X)}$ for all topological spaces X.