Instructor: Matthias Nagel

due in class 9:30, October 6

Homework 2

- **Exercise 2.1** (Homotopic maps). (1) Show that the relation of homotopy equivalence of maps $X \to Y$ is an equivalence relation.
 - (2) Let $f: X \to Y$, $f': X \to Y$, and $g: Y \to Z$, and $g': Y \to Z$ such that $f \simeq f'$, and $g \simeq g'$. Then $f \circ g \simeq f' \circ g'$.
 - (3) Let $f, f': X \to Y$, and $a, b \in X$ with f(a) = f'(a) and f(b) = f'(b). We have defined associated maps

$$\pi_1(f), \pi_1(f'): \pi_1(X, a, b) \to \pi_1(Y, f(a), f(b))$$

in the lecture. Show if $f \simeq f'$ rel $\{a, b\}$, then $\pi_1(f) = \pi_1(f')$.

Exercise 2.2. The surface of genus 2 is obtained from the octagon by identifying the sides as follows:

Compute its Euler characteristic.

Exercise 2.3. (1) Show that Dⁿ×D^m is homeomorphic to the closed disk D^{n+m}.
(2) Let X, Y be finite CW-complexes. Equip the product X × Y with a CW-structure.

Exercise 2.4. Prove or find a counter-example: A map $f: X \to Y$ is a homotopy equalence, if there exists map $g: Y \to X$ and $h: Y \to X$ such that

$$f \circ g \simeq \operatorname{id}_Y \quad h \circ f \simeq \operatorname{id}_X$$

Exercise 2.5. Denote the set of sequences with values in \mathbb{R} by $\mathbb{R}^{\mathbb{N}}$. Consider the normed vector space

$$\mathbb{R}^{\infty} = \left\{ x = (x_i)_{i \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : \text{ only finitely many } x_i \neq 0 \right\}$$

with norm $||x|| = \sum_i |x_i|$. Denote the unit sphere of \mathbb{R}^{∞} by

$$S(\mathbb{R}^{\infty}) = \Big\{ x \in \mathbb{R}^{\infty} \colon \|x\| = 1 \Big\}.$$

(1) Show that the shift map $T \colon \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ defined by

$$T(x)_i = \begin{cases} 0 & i = 0\\ x_{i-1} & i > 0 \end{cases},$$

is continuous and restricts to a map $T: S(\mathbb{R}^{\infty}) \to S(\mathbb{R}^{\infty})$. Show that this restriction is homotopic to the identity $\mathrm{id}_{S(\mathbb{R}^{\infty})}$. (2) Show that $T \simeq c_{(1,0,\ldots)}$, and deduce that $S(\mathbb{R}^{\infty})$ is contractible.