Instructor: Matthias Nagel

due in class 9:30, November 24

Homework 5

Exercise 5.1. Consider the space $S = \mathbb{R}^2$ together with the action of the group $G = \langle s, t | stst^{-1} \rangle$ given by:

$$G \times S \to S$$

$$s \cdot (x, y) = (x + 1, y)$$

$$t \cdot (x, y) = (-x, y + 1)$$

Show that these formulas give a well-defined group action. Show that the action is free. The quotient $K = S/\sim$ is called the *Klein bottle*. Show that K is homeomorphic to the quotient of the disk:

Exercise 5.2. Show that

(1) $yx^{-1} = x^{-1}y$ holds for the generators x, y in the group $\langle x, y | xyx^{-1}y^{-1} \rangle$. (2) $\langle x, y | xy^2 \rangle \cong \langle x, y | xy \rangle$.

Exercise 5.3. Compute the fundamental group of the surface of genus 2; see Exercise 2.2. Is it abelian?

Exercise 5.4. Consider the chain complex

$$C = \left(\dots \xrightarrow{\cdot 2} \mathbb{Z}/4 \xrightarrow{\cdot 2} \mathbb{Z}/4 \xrightarrow{\cdot 2} \mathbb{Z}/4 \xrightarrow{\cdot 2} \dots \right).$$

Is the identity id: $C \to C$ chain-homotopic to the zero map 0?